Abstract

In order to characterise the possible mechanisms involved in Al toxicity some functional characteristics were analysed in young barley (Hordeum vulgare L.) seedlings cultivated between moistened filter paper. Transfer of germinated barley seeds into hydroponic culture system caused significant stress, which was manifested by root-growth inhibition and elevated Evans blue uptake of root tips. Hydroponics caused stress unabled the analysis of Al-induced stress in the young barley roots during the first day of cultivation. Several (3–4) days are required for adaptation of barley seedlings to hydroponics in spite of strong aeration of the medium. Using filter paper compared to cultivation in solution application of much higher Al concentrations were required to inhibit root growth. Al-induced root growth inhibition, Al uptake, damage of plasma-membrane (PM) permeability of root cells, as well as elevated oxalate oxidase - OxO (EC 1.2.3.4) activity were significantly correlated. While 1 mM Al concentration had no effect on barley roots growing on filter paper, 5 to 100 mM Al concentration inhibited root growth, enhanced cell death and induced oxalate oxidase activity with increasing intensity. The time course analysis of OxO gene expression and OxO activity showed that 10 mM Al increased OxO activity as soon as 3 h after exposure of roots to Al reaching its maximum at about 18 h after Al application. These results indicate that expression of OxO is activated very early after exposure of barley to Al, suggesting its role in oxidative stress and subsequent cell death caused by Al toxicity in plants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call