Abstract

Rice fields are an important source of nitrous oxide (N2O), where rice plants could act as a key factor controlling N2O fluxes during the flooding-drying process; however, the microbial driving mechanisms are unclear. In this study, specially designed equipment was used to grow rice plants and collect emitted N2O from the root-growing zone (zone A), root-free zones (zones B, C, and D) independently, at tillering and booting stages under flooding and drying conditions. Soil samples from the four zones were also taken separately. Nitrifying and denitrifying community abundances were detected using quantitative polymerase chain reaction (qPCR). The N2O emission increased significantly along with drying, but the N2O emission capabilities varied among the four zones under drying, while zone B possessed the highest N2O fluxes that were 2.7~4.5 times higher than those from zones C and D. However, zone A showed N2O consumption potential. Notably, zone B also harbored the highest numbers of narG-containing denitrifiers and amoA-containing nitrifiers under drying at both tillering and booting stages. This study demonstrates that drying caused significant increase in N2O emission from rhizosphere soil, in which the higher abundance of AOB would help to produce more nitrate and significantly higher narG-containing microbes would drive more N2O production and emission.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call