Abstract

Pyridine nucleotides are redox coenzymes that are critical in bioenergetics, metabolism, and neurodegeneration. Here we use brain slice multiphoton microscopy to show that substantia nigra dopamine neurons, which are sensitive to stress in mitochondria and the endoplasmic reticulum (ER), display elevated combined NADH and NADPH (i.e., NAD(P)H) autofluorescence. Despite limited mitochondrial mass, organellar NAD(P)H is extensive because much of the signal is derived from the ER. Remarkably, even though pyridine nucleotides cannot cross mitochondrial and ER membranes, inhibiting mitochondrial function with an uncoupler or interrupting the electron transport chain with cyanide (CN-) alters ER NAD(P)H. The ER CN- response can occur without a change in nuclear NAD(P)H, raising the possibility of redox shuttling via the cytoplasm locally between neuronal mitochondria and the ER. We propose that coregulation of NAD(P)H in dopamine neuron mitochondria and ER coordinates cell redox stress signaling by the two organelles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.