Abstract

Hepatobiliary involvement is a hallmark in cystic fibrosis (CF), as the causative CF Transmembrane Conductance Regulator (CFTR) defect is expressed in the biliary tree. However, bile acid (BA) compositions in regard to pancreatic insufficiency, which is present at an early stage in about 85% of CF patients, have not been satisfactorily understood. We assess the pattern of serum BAs in people with CF (pwCF) without CFTR modulator therapy in regard to pancreatic insufficiency and the CFTR genotype. In 47 pwCF, 10 free and 12 taurine- and glycine-conjugated BAs in serum were prospectively assessed. Findings were related to genotype, pancreatic insufficiency prevalence (PIP)-score, and hepatic involvement indicated by serum liver enzymes, as well as clinical and ultrasound criteria for CF-related liver disease. Serum concentrations of total primary BAs and free cholic acid (CA) were significantly higher in pwCF with higher PIP-scores (p = 0.025, p = 0.009, respectively). Higher total BAs were seen in pwCF with PIP-scores ≥0.88 (p = 0.033) and with pancreatic insufficiency (p = 0.034). Free CA was higher in patients with CF-related liver involvement without cirrhosis, compared to pwCF without liver disease (2.3-fold, p = 0.036). pwCF with severe CFTR genotypes, as assessed by the PIP-score, reveals more toxic BA compositions in serum. Subsequent studies assessing changes in BA homeostasis during new highly effective CFTR-modulating therapies are of high interest.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.