Abstract

BackgroundEndothelial protein C receptor (EPCR) is a membranous protein that can be combined with a variety of ligands and plays important roles in anticoagulant and anti-inflammation. Recent reports have shown that surface EPCR expression on T cells is negatively associated with Th17 differentiation and is co-expressed with other immunosuppressive molecules, such as The programmed cell death 1 (PD-1) and cytotoxic T lymphocyte-associated antigen-4 (CTLA-4). Hence, we hypothesized that EPCR may play a critical role in rheumatoid arthritis (RA) disease progression that is mediated by Th17 differentiation. In order to explore the role of EPCR on RA disease pathogenesis, we detected membranous EPCR (mEPCR) expression in CD4+ T cells and soluble EPCR (sEPCR) expression in the sera of RA patients. MethodsThe proportion of CD4+/EPCR+ T cells in the peripheral blood of RA patients was detected by flow cytometry, and the expression of sEPCR in the sera of RA patients was detected by enzyme-linked immunosorbent assay (ELISA). For in vitro experiments, protein C (PC) and EPCR recombinant proteins were used to block peripheral blood mononuclear cell (PBMC) activation and to detect Th17 differentiation. For in vivo experiments in DBA/1 mice with collagen-induced arthritis (CIA), we administered PC and EPCR recombinant proteins, monitored disease progression, and evaluated the role of EPCR in disease progression. ResultsThe proportion of CD4+/EPCR+ T cells in the peripheral blood of RA patients was lower than that of osteoarthritis (OA) patients, while the expression level of sEPCR in the sera of RA patients was concomitantly higher than that in OA patients. Subsequent analysis revealed that sEPCR expression was positively correlated with rheumatoid factors (RF) and other inflammatory indicators in RA patients. Further studies confirmed that sEPCR administration alleviated the progression of collagen-induced arthritis and partially blocked the therapeutic effect of PC in CIA mice. ConclusionSoluble EPCR is associated with RA disease progression and induces disease remission in CIA mice by inhibiting Th17 differentiation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call