Abstract

BackgroundPlatelet-rich microvascular thrombi are common in severe COVID-19. Endogenous nitric oxide (NO)-signaling limits thrombus formation and previously we identified platelet subpopulations with a differential ability to produce NO based on the presence or absence of endothelial nitric oxide synthase (eNOS). eNOS expression is counter-regulated by cytokines, and COVID-19-associated immune/inflammatory responses may affect the transcriptome profile of megakaryocytes and their platelet progeny. ObjectivesWe investigated whether the percentage of eNOS-negative to eNOS-positive platelets increases in COVID-19 patients and whether this change may be due to the actions of pro-inflammatory cytokines on megakaryocytes. MethodsPlatelets were isolated from hospitalized COVID-19 patients and COVID-19-negative controls. Platelet eNOS was measured by flow cytometry and plasma inflammatory cytokines by ELISA. Megakaryocytes from eNOS-GFP transgenic mice and the Meg-01 cell line were characterized to identify an appropriate model to study eNOS-based platelet subpopulation formation in response to inflammatory cytokines. ResultsCOVID-19 patients demonstrated a significant increase in eNOS-negative and a concomitant decrease in eNOS-positive platelets compared to controls, and this change was associated with disease severity as assessed by ICU admission. A higher eNOS-negative to –positive platelet percentage was associated with enhanced platelet activation as measured by surface CD62P. Accordingly, COVID-19 patients demonstrated higher TNF-α, IL-6, and IL-1β plasma concentrations than controls. Inflammatory cytokines associated with COVID-19 promoted eNOS-negative Meg-01 formation and enhanced subsequent eNOS-negative platelet-like particle formation. ConclusionsCOVID-19 patients have a higher percentage of eNOS-negative to –positive platelets, likely as a result of inflammatory response reducing megakaryocyte eNOS expression, which predisposes to thrombosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.