Abstract

Per- and polyfluoroalkyl substances (PFAS) are contaminants of global concern due to their persistence and associated negative health effects. Considerable attention has been given to monitoring PFAS in the aquatic environment, however, few investigations have done so using freshwater benthic macroinvertebrates (BMIs). As these bottom-dwelling animals are known to bioconcentrate exogenous pollutants to a high degree, studying their PFAS levels may provide a more integrated view of PFAS contamination in the aquatic environment. In this study, BMIs, sediment, and surface water were collected from two streams in the Hudson River Watershed (one historically-impacted by PFAS) and analyzed for 44 PFAS using liquid chromatography–tandem mass spectrometry (LC–MS/MS). Orbitrap high-resolution mass spectrometry (HRMS) was used to confirm the identities of quantitated analytes. Across all matrices, 17 analytes were detected with PFOA dominating in surface water and PFOS in sediment/BMIs. PFOS bioaccumulation factors (BAFs) were approximately one order of magnitude higher than those of PFOA and ranged from 857 to 5151 L kg−1 across different BMI taxa. While PFAS concentrations in surface water and sediment were not excessively high, elevated levels were still measured in most BMI taxa. This observation suggests that the extent of PFAS contamination in a local system may be severely underestimated if only surface water and sediment are used for monitoring. Moreover, these findings have relevance for human exposure assessment considering BMIs are the primary food source of many fish.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.