Abstract

Orofacial pain conditions including temporomandibular disorder (TMD) and migraine are characterized by peripheral and central sensitization of trigeminal nociceptive neurons. The goal of this study was to investigate the role of calcitonin gene-related peptide (CGRP) in promoting bidirectional signaling within the trigeminal system to mediate sensitization of primary nociceptive neurons. Adult male Sprague–Dawley rats were injected intercisternally with CGRP or co-injected with the receptor antagonist CGRP8–37 or KT 5720, a protein kinase A (PKA) inhibitor. Nocifensive head withdrawal response to mechanical stimulation was investigated using von Frey filaments. Expression of PKA, glial fibrillary acidic protein (GFAP), and ionized calcium-binding adapter molecule 1 (Iba1) in the spinal cord and phosphorylated extracellular signal-regulated kinase (P-ERK) in the ganglion was studied using immunohistochemistry. Some animals were co-injected with CGRP and Fast Blue dye and the ganglion was imaged using fluorescent microscopy. CGRP increased nocifensive responses to mechanical stimulation when compared to control. Co-injection of CGRP8–37 or KT 5720 with CGRP inhibited the nocifensive response. CGRP stimulated PKA and GFAP expression in the spinal cord, and P-ERK in ganglion neurons. Seven days post injection, Fast Blue was observed in ganglion neurons and satellite glial cells. Our results demonstrate that elevated levels of CGRP in the upper spinal cord promote sensitization of primary nociceptive neurons via a mechanism that involves activation of PKA centrally and P-ERK in ganglion neurons. Our findings provide evidence of bidirectional signaling within the trigeminal system that facilitate increased neuron-glia communication within the ganglion associated with trigeminal sensitization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.