Abstract

S-Adenosyl-l-methionine (SAM), with diverse pharmaceutical applications, is biosynthesized from l-methionine and ATP. To enhance SAM accumulation in Saccharomyces cerevisiae CGMCC 2842 (2842), a new strategy based on yeast acetyl-CoA metabolism combined with introducing a methionine adenosyltransferase (metK1) from Leishmania infantum, was presented here. It was found that over-expressing acs2 (encoding acetyl-CoA synthase) and deleting mls1 (encoding malate synthase) increased SAM by 0.86- and 1.30-fold, respectively. To eliminate feedback inhibition of SAM synthase, a codon-optimized metK1 was introduced into 2842, and an increase of 1.45-fold of SAM was observed. Subsequently, metK1 and acs2 were co-expressed in the mls1 deleted strain, obtained the highly SAM-productive strain Ymls1 △GAPmK, and 2.22g/L of SAM accumulated, which was 3.36-fold that in 2842. Moreover, the Ymls1 △GAPmK strain yielded 6.06g/L SAM, which was 9.18-fold that in 2842, by fed-batch fermentation in a 10-L fermenter. Finally, the isolation and purification of SAM from yeast cell and preparation of SAM sulfate were preliminarily investigated. This study demonstrated that up-regulating acs2 and deleting mls1, which elevated intracellular acetyl-CoA levels, effectively enhanced the intracellular methionine biosynthesis. The elevated intracellular acetyl-CoA levels ultimately enhanced SAM accumulation, whereas the introduction of metK1 enhanced the redirection of acetyl-CoA to SAM biosynthesis in Ymls1 △GAPmK strain.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.