Abstract

Ataxia-telangiectasia (A-T) is an autosomal recessive, multisystem disorder characterized by cerebellar degeneration, cancer predisposition, and immune system defects. A major cause of mortality in A-T patients is severe pulmonary disease; however, the underlying causes of the lung complications are poorly understood, and there are currently no curative therapeutic interventions. In this study, we examined the lung phenotypes caused by ATM-deficient immune cells using a mouse model of A-T pulmonary disease. In response to acute lung injury, ATM-deficiency causes decreased survival, reduced blood oxygen saturation, elevated neutrophil recruitment, exaggerated and prolonged inflammatory responses and excessive lung injury compared to controls. We found that ATM null bone marrow adoptively transferred to WT recipients induces similar phenotypes that culminate in impaired lung function. Moreover, we demonstrated that activated ATM-deficient macrophages exhibit significantly elevated production of harmful reactive oxygen and nitrogen species and pro-inflammatory cytokines. These findings indicate that ATM-deficient immune cells play major roles in causing the lung pathologies in A-T. Based on these results, we examined the impact of inhibiting the aberrant inflammatory responses caused by ATM-deficiency with reparixin, a CXCR1/CXCR2 chemokine receptor antagonist. We demonstrated that reparixin treatment reduces neutrophil recruitment, edema and tissue damage in ATM mutant lungs. Thus, our findings indicate that targeted inhibition of CXCR1/CXCR2 attenuates pulmonary phenotypes caused by ATM-deficiency and suggest that this treatment approach represents a viable therapeutic strategy for A-T lung disease.

Highlights

  • Ataxia-telangiectasia (A-T) is an autosomal recessive, multisystem disorder characterized by cerebellar degeneration, cancer predisposition, and immune system defects

  • We find that reparixin attenuates key inflammatory phenotypes in our preclinical mouse model of A-T lung disease, thereby indicating that antagonism of CXCR1/ CXCR2 may represent an effective therapeutic strategy for this frequent cause of death in A-T patients

  • Lung disease is a major cause of morbidity and mortality in A-T p­ atients[5]; the underlying mechanisms and critical cell types involved in the development of pulmonary complications have not been fully defined

Read more

Summary

Introduction

Ataxia-telangiectasia (A-T) is an autosomal recessive, multisystem disorder characterized by cerebellar degeneration, cancer predisposition, and immune system defects. We examined the lung phenotypes caused by ATM-deficient immune cells using a mouse model of A-T pulmonary disease. We demonstrated that activated ATM-deficient macrophages exhibit significantly elevated production of harmful reactive oxygen and nitrogen species and pro-inflammatory cytokines. These findings indicate that ATM-deficient immune cells play major roles in causing the lung pathologies in A-T. Based on these results, we examined the impact of inhibiting the aberrant inflammatory responses caused by ATM-deficiency with reparixin, a CXCR1/ CXCR2 chemokine receptor antagonist. Multiple defects in cellular and inflammatory responses to DNA damage, oxidative stress and infectious insults contribute to the pleiotropic phenotypes observed in A-T

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call