Abstract
Mature pyramidal neurons of cerebral cortex in several neuronal storage disease elaborate dendrites. These dendrites appear specifically on pyramidal neurons containing elevated GM2 ganglioside and a variety of studies support the hypothesis that this ganglioside is responsible for inducing the new dendrite growth. To determine whether a similar association between GM2 ganglioside and dendrite growth occurs in normal neurons, we used an antibody to localize GM2 in developing cat neocortex. Our results show that GM2 ganglioside is elevated in normal cortical neurons during the period when dendritogenesis is occurring, but is greatly diminished in these cells after dendritic differentiation is complete. Elevations of GM2 occur in deep neurons earlier than in superficial ones, a sequence that corresponds closely to the inside-first, outside-last progression of cortical neuron differentiation. Ultrastructurally, GM2 immunoreactivity is found sequestered in vesicles with a distribution that coincides with sites of ganglioside synthesis and transport. The close association between elevated GM2 ganglioside and dendrite growth in cortical pyramidal neurons during normal development, coupled with a similar correlation between GM2 and ectopic dendritogenesis in neuronal storage disease, support the view that this specific ganglioside plays a pivotal role in regulating dendritogenesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.