Abstract

Type 1 diabetes (T1D) is an autoimmune disease characterized by the immune system's failure to maintain self-tolerance, resulting in the autoimmune destruction of pancreatic beta cells. Although T1D has conventionally been viewed as a T-cell-dominant disease, recent research has emphasized the contribution of B cells in the onset of the disease. However, the mechanism underlying aberrant B cell responses remains unknown. B cell metabolism is a crucial prerequisite for B cell function and the development of adaptive immune responses. Here, we investigated the metabolic features of B cells, first in a cross-sectional cohort and subsequently in non-obese diabetic (NOD) mice, and revealed that there is an increased frequency of high-glucose-avidity (2-NBDGhigh) B cell population that may contribute to T1D progression. Further characterization of the metabolic, transcriptional and functional phenotype of B cells in NOD mice found that elevated glucose avidity is associated with a greater capacity for co-stimulation, proliferation and inflammatory cytokine production. Mechanistically, elevated Myc signaling orchestrated the glucose metabolism and the pro-inflammatory response of B cells in T1D. In vitro experiments demonstrated that pharmacological inhibition of glucose metabolism using metformin and 2-DG reduced pro-inflammatory cytokine production and B cell proliferation. Moreover, the combination of these inhibitors successfully delayed insulitis development, onset of diabetes, and improved high blood glucose levels in streptozotocin (STZ)-induced diabetic mice model. Taken together, our work has uncovered these high-glucose-avidity B cells as novel adjuvant diagnostic and therapeutic targets for T1D.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.