Abstract
Alexander disease (AxD) caused by mutations in the coding region of GFAP is a neurodegenerative disease characterized by astrocyte dysfunction, GFAP aggregation, and Rosenthal fiber accumulation. Although how GFAP mutations cause disease is not fully understood, Rosenthal fibers could be induced by forced overexpression of human GFAP and this could be lethal in mice implicate that an increase in GFAP levels is central to AxD pathogenesis. Our recent studies demonstrated that intronic GFAP mutations cause disease by altering GFAP splicing, suggesting that an increase in GFAP isoform expression could lead to protein aggregation and astrocyte dysfunction that typify AxD. Here we test this hypothesis by establishing primary astrocyte cultures from transgenic mice overexpressing human GFAP. We found that GFAP-δ and GFAP-κ were disproportionately increased in transgenic astrocytes and both were enriched in Rosenthal fibers of human AxD brains. In vitro assembly studies showed that while the major isoform GFAP-α self-assembled into typical 10-nm filaments, minor isoforms including GFAP-δ, -κ, and -λ were assembly-compromised and aggregation prone. Lentiviral transduction showed that expression of these minor GFAP isoforms decreased filament solubility and increased GFAP stability, leading to the formation of Rosenthal fibers-like aggregates that also disrupted the endogenous intermediate filament networks. The aggregate-bearing astrocytes lost their normal morphology and glutamate buffering capacity, which had a toxic effect on neighboring neurons. In conclusion, our findings provide evidence that links elevated GFAP isoform expression with GFAP aggregation and impaired glutamate transport, and suggest a potential non-cell-autonomous mechanism underlying neurodegeneration through astrocyte dysfunction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.