Abstract

The molecular mechanisms underlying the pathogenesis of chronic obstructive pulmonary disease (COPD) are still unclear, however signaling pathways associated with lung development, such as the transforming growth factor (TGF)-β superfamily, could be implicated in COPD. Growth differentiation factor (GDF)-15, a member of the TGF-β superfamily, is involved in inflammation, mucus secretion, and cachexia. We analyzed the pulmonary expression of GDF-15 in smokers and patients with COPD, in cigarette smoke (CS)-exposed cultures of primary human bronchial epithelial cells (pHBECs), and in CS-exposed mice. Next, we exposed GDF-15 KO and control mice to air or CS and evaluated pulmonary inflammation. GDF-15 levels were higher in sputum supernatant and lung tissue of patients with COPD and smokers without COPD compared with never smokers. Immunohistochemistry revealed GDF-15 staining in the airway epithelium. Increased expression and secretion of GDF-15 was confirmed in vitro in CS-exposed pHBECs compared with air-exposed pHBECs. Similarly, GDF-15 levels were increased in lungs of CS-exposed mice. Importantly, GDF-15 deficiency attenuated the CS-induced pulmonary inflammation. These results suggest that increased GDF-15-as observed in lungs of smokers and patients with COPD-contributes to CS-induced pulmonary inflammation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call