Abstract

The role of fluid shear stress (FSS) in collateral vessel growth remains disputed and prospective in vivo experiments to test its morphogenic power are rare. Therefore, we studied the influence of FSS on arteriogenesis in a new model with extremely high levels of collateral flow and FSS in pig and rabbit hind limbs. A side-to-side anastomosis was created between the distal stump of one of the bilaterally occluded femoral arteries with the accompanying vein. This clamps the collateral reentry pressure at venous levels and increases collateral flow, which is directed to a large part into the venous system. This decreases circumferential wall stress and markedly increases FSS. One week after anastomosis, angiographic number and size of collaterals were significantly increased. Maximal collateral flow exceeded by 2.3-fold that obtained in the ligature-only hind limb. Capillary density increased in lower leg muscles. Immunohistochemistry revealed augmented proliferative activity of endothelial and smooth muscle cells. Intercellular adhesion molecule-1 and vascular cell adhesion molecule (VCAM)-1 were upregulated, and monocyte invasion was markedly increased. In 2-dimensional gels, actin-regulating cofilin1 and cofilin2, destrin, and transgelin2 showed the highest degree of differential regulation. High levels of FSS cause a strong arteriogenic response, reinstate cellular proliferation, stimulate cytoskeletal rearrangement, and normalize maximal conductance. FSS is the initiating molding force in arteriogenesis. The role of fluid shear stress on the development of a collateral circulation was studied by abruptly increasing collateral blood flow by a distal femoral artery-to-vein anastomosis. This increased number and size of collateral vessels to a hitherto unknown degree. Fluid shear stress is the primary and strongest arteriogenic stimulus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.