Abstract
Specific fatty acid ethyl esters (FAEE) in meconium of newborns have been shown to correlate with maternal ethanol exposure. An animal model is needed to assess the validity of this biomarker. We hypothesized that the pregnant/fetal sheep is a feasible animal model for validating FAEE as a biomarker of prenatal ethanol exposure. Nine pregnant ewes were treated during the third trimester with different i.v. ethanol doses. The control group consisted of 14 pregnant ewes exposed to similar volumes of saline. On gestational d 133, the fetuses were delivered and meconium samples removed. FAEEs were quantified by gas chromatography-flame ionization detection. FAEEs were found in both control and ethanol exposed fetuses. Ethyl oleate, ethyl linoleate, and ethyl arachidonate levels were significantly higher in the ethanol-exposed sheep. Ethyl oleate was the FAEE that correlated most strongly with alcohol ingestion during pregnancy and had the greatest area under the curve (0.94). Using a cut-off value of 131 ng/g ethyl oleate dry weight, sensitivity was 89% and specificity was 100%. In conclusion, pregnant ewes are a feasible model for validating biomarkers of prenatal ethanol exposure. Ethyl oleate, ethyl linoleate, and ethyl arachidonate may be useful biomarkers of prenatal alcohol exposure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.