Abstract
BackgroundEpidemiological studies have confirmed that abnormal circadian rhythms are associated with tumorigenesis in breast cancer. However, few studies have investigated the pathological roles of rhythm genes in breast cancer progression. In this study, we aimed to evaluate the aberrant expression of 32 rhythm genes in breast cancer and detect the pathological roles and molecular mechanisms of the altered rhythm gene in regulating the progression of triple negative breast cancer (TNBC).MethodsThe aberrant expression of rhythm genes in breast cancer was screened by searching the GEPIA database and validated by using qRT-PCR and immunohistochemistry staining. Bioinformatics analysis combined with luciferase reporter experiment and chromatinimmunopercitation (ChIP) were used to investigate the molecular mechanism about aberrant expression of identified rhythm gene in breast cancer. The pathological roles of identified rhythm gene in TNBC progression was evaluated by colony formation assay, wound healing experiment, transwell assay, subcutaneous tumor formation and the mouse tail vein injection model through gain-of-function and loss-of-function strategies respectively. mRNA array, bioinformatics analysis, luciferase reporter experiment, ChIP and immunoflurescence assay were employed to investigate the key molecules and signaling pathways by which the identified rhythm gene regulating TNBC progression.ResultsWe identified that nuclear factor interleukin 3 regulated (NFIL3) expression is significantly altered in TNBC compared with both normal breast tissues and other subtypes of breast cancer. We found that NFIL3 inhibits its own transcription, and thus, downregulated NFIL3 mRNA indicates high expression of NFIL3 protein in breast cancer. We demonstrated that NFIL3 promotes the proliferation and metastasis of TNBC cells in vitro and in vivo, and higher expression of NFIL3 is associated with poor prognosis of patients with TNBC. We further demonstrated that NFIL3 enhances the activity of NF-κB signaling. Mechanistically, we revealed that NFIL3 directly suppresses the transcription of NFKBIA, which blocks the activation of NF-κB and inhibits the progression of TNBC cells in vitro and in vivo. Moreover, we showed that enhancing NF-κB activity by repressing NFKBIA largely mimics the oncogenic effect of NFIL3 in TNBC, and anti-inflammatory strategies targeting NF-κB activity block the oncogenic roles of NFIL3 in TNBC.ConclusionNFIL3 promotes the progression of TNBC by suppressing NFKBIA transcription and then enhancing NF-κB signaling-mediated cancer-associated inflammation. This study may provide a new target for TNBC prevention and therapy.Graphical
Highlights
Epidemiological studies have confirmed that abnormal circadian rhythms are associated with tumorigenesis in breast cancer
nuclear factor interleukin 3 regulated (NFIL3) promotes the progression of triple negative breast cancer (TNBC) by suppressing NFKBIA transcription and enhancing NF-κB signaling-mediated cancer-associated inflammation
We further compared the mRNA levels of these six rhythm genes between 20 normal breast tissues and 20 breast cancer tissues by using qPCR and confirmed that the aberrant expression of NFIL3 and EGR3 in breast cancer is consistent with the results from the GEPIA database (Fig. 1B)
Summary
Epidemiological studies have confirmed that abnormal circadian rhythms are associated with tumorigenesis in breast cancer. Few studies have investigated the pathological roles of rhythm genes in breast cancer progression. We aimed to evaluate the aberrant expression of 32 rhythm genes in breast cancer and detect the pathological roles and molecular mechanisms of the altered rhythm gene in regulating the progression of triple negative breast cancer (TNBC). Recent evidence has shown that alterations in circadian rhythms or rhythm genes are associated with susceptibility to breast cancer. The abnormal expression of rhythm genes was associated with the occurrence and progression of breast cancer [7]. The expression levels of rhythm genes, such as CLOCK, PER1, PER2, PER3, CRY2, RORC and TIMELESS, are associated with the metastasis-free survival of breast cancer patients [9]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Experimental & Clinical Cancer Research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.