Abstract

The protein kinase B-RAF is a human oncogene that is mutated in ∼70% of human melanomas and transforms mouse melanocytes. Microphthalmia-associated transcription factor (MITF) is an important melanocyte differentiation and survival factor, but its role in melanoma is unclear. In this study, we show that MITF expression is suppressed by oncogenic B-RAF in immortalized mouse and primary human melanocytes. However, low levels of MITF persist in human melanoma cells harboring oncogenic B-RAF, suggesting that additional mechanisms regulate its expression. MITF reexpression in B-RAF–transformed melanocytes inhibits their proliferation. Furthermore, differentiation-inducing factors that elevate MITF expression in melanoma cells inhibit their proliferation, but when MITF up-regulation is prevented by RNA interference, proliferation is not inhibited. These data suggest that MITF is an antiproliferation factor that is down-regulated by B-RAF signaling and that this is a crucial event for the progression of melanomas that harbor oncogenic B-RAF.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call