Abstract
BackgroundLipocalin 13 (LCN13) is a member of the lipocalin family that consists of numerous secretory proteins. LCN13 high-expression has been reported to possess anti-obesity and anti-diabetic effects. Although metabolic dysfunction-associated steatotic liver diseases (MASLD) including metabolic dysfunction-associated steatohepatitis (MASH) are frequently associated with obesity and insulin resistance, the functional role of endogenous LCN13 and the therapeutic effect of LCN13 in MASH and related metabolic deterioration have not been evaluated. MethodsWe employed a methionine-choline deficient diet model and MASH cell models to investigate the role of LCN13 in MASH development. We sought to explore the effects of LCN13 on lipid metabolism and inflammation in hepatocytes under PA/OA exposure using Western blotting, real-time RT-PCR, enzyme-linked immunosorbent assay, hematoxylin and eosin staining, oil red O staining. Using RNA sequencing, chromatin immunoprecipitation assay, and luciferase reporter assays to elucidate whether farnesoid X receptor (FXR) regulates human LCN13 transcription as a transcription factor. ResultsOur study found that LCN13 was down-regulated in MASH patients, MASH mouse and cell models. LCN13 overexpression in hepatocyte cells significantly inhibited lipid accumulation and inflammation in vitro. Conversely, LCN13 downregulation significantly exacerbated lipid accumulation and inflammatory responses in vivo and in vitro. Mechanistically, we provided the first evidence that LCN13 was transcriptionally activated by FXR, representing a novel direct target gene of FXR. And the key promoter region of LCN13 binds to FXR was also elucidated. We further revealed that LCN13 overexpression via FXR activation ameliorates hepatocellular lipid accumulation and inflammation in vivo and in vitro. Furthermore, LCN13-down-regulated mice exhibited aggravated MASH phenotypes, including increased hepatic lipid accumulation and inflammation. ConclusionOur findings provide new insight regarding the protective role of LCN13 in MASH development and suggest an innovative therapeutic strategy for treating MASH or related metabolic disorders.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.