Abstract

Inhibin and Activin, belong to the transforming growth factor β superfamily (TGF-β), which associate with the regulation of the reproductive process by the modulation of the hypothalamic-pituitary-gonad (HPG) axis. In this study, we reported the molecular cloning and tissue expression of inhibin α in allotriploid crucian carp and its parent- diploid red crucian carp. The full-length cDNA of inhibin α were respectively 1632 bp and 1642 bp in allotriploids and diploids, which both consisted of a 1044 bp open reading frame (ORF) encoding 347 amino acids. Real-time quantitative PCR (RT-qPCR) showed that allotriploids and diploids had significant expression of inhibin α in testis and ovary, and the expression of inhibin α in the gonads of allotriploids was higher than that of diploids. The immunohistochemistry indicated that the ovarian development of allotriploids was abnormal, and the expression of Inhibin α in the ovary of allotriploids was higher than that of diploids. Results of co-immunoprecitation (co-IP) demonstrated that the Inhibin α and Activin βA, Inhibin α and Activin βB can form dimers. These findings suggested that the elevated expression of inhibin α and the competitive binding of Inhibin α subunit with Activin β subunits in allotriploids may be releted to the sterility of allotriploids. Furthermore, these results will facilitate the investigation of reproduction characteristics in allotriploids and provide theoretical basis for the study of polyploid breeding in the future.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.