Abstract

Hepatocellular carcinoma (HCC) is the most common primary liver malignancy resulting in high mortality. HCC progression is associated with abnormal signal transduction that changes cell signaling pathways and ultimately leads to dysregulation of cell functions and uncontrolled cell proliferation. Present study was undertaken with the objective to identify differentially expressed proteins and quantify their transcript expression in the liver of HCC-bearing rats vis-à-vis controls and to decipher the network involving interaction of genes coding for the characterized proteins to an insight into mechanism of HCC tumorigenesis. 2D-Electrophoresis and MALDI-TOF-MS/MS were used to characterize differentially expressed proteins in DEN (diethylnitrosamine)-induced HCC tissue using the protocol reported by us earlier. Real-time PCR was performed to quantify the expression of transcripts for the identified proteins. GENEMANIA, an interacting network of genes coding for selected proteins, was deciphered that provided the functional role of these proteins in HCC progression. Upregulation of proteins SYNE1, MMP10, and MTG1 was observed. The mRNA quantification revealed elevated expression of their transcripts at HCC initiation, progression, and tumor stages. Network analysis showed the involvement of the genes coding for these proteins in dysregulation of signaling pathways during HCC development. The elevated expression of SYNE1, MMP10, and MTG1 suggests the role of these proteins as potential players in HCC progression and tumorigenesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call