Abstract

This study experimentally examines the effects of four diesel-gas co-fuels, two engine loads and an aftertreatment on regulated and unregulated emissions from a 6-cylinder natural-aspirated direct-injection heavy-duty diesel engine (HDDE) with an engine dynamometer. Fuel energy of ultra-low-sulfur diesel was substituted with 10% and 20% of gas fuels, including pure H2, CH4, and two CH4-CO2 blends. The particle number size distributions of volatile and nonvolatile nanoparticles were measured under ambient temperature and after 300 °C heating, respectively. The results show that the gas fuels caused increases of hydrocarbon emission, slight changes of NOx emission, and decreases of opacity. All four gas fuels resulted in elevated emissions of both volatile and nonvolatile nanoparticles at 25% and 75% load, in the range of 29% to 390%. The increased emissions of volatile nanoparticles were variable and without obvious trends. Special attentions should be given to the addition of H2 under high load, during which significant increases of volatile nanoparticles could be formed not only post-combustion (up to 1376%), but also post-diesel oxidation catalyst plus diesel particulate filter (DOC + DPF). The nonvolatile nanoparticles, on the other hand, could be effectively removed by the retrofitted DOC + DPF, with efficiency >98.2%. A noteworthy fraction of solid particles of sizes <23 nm were found in the exhaust, not being accounted for by current regulatory emission standard.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call