Abstract

Background and ObjectiveHepatocellular carcinoma (HCC) is one of the most common cancers worldwide, and the DNA polymerase delta (POLD) family is significantly related to cancer prognosis. This study aimed to explore the significance of the POLD family in HCC via the DNA damage repair (DDR) pathway.MethodsData mining was conducted using bioinformatics methods. RNA sequencing and clinicopathological data were collected from The Cancer Genome Atlas, GTEx database and the Gumz Renal cohort. Statistical analyses were also performed in cancer samples (n>12,000) and the Affiliated Hospital of Youjiang Medical University for Nationalities (AHYMUN, n=107) cohort.ResultsThe POLD family (POLD1–4) was identified as the most important functional component of the DDR pathway. Based on the analysis of independent cohorts, we found significantly elevated POLD expression in HCC compared with normal tissues. Second, we investigated the prognostic implication of elevated POLD1 expression in HCC and pan-cancers, revealing that increased POLD1 levels were correlated to worse prognoses for HCC patients. Additionally, we identified 11 hub proteins interacting closely with POLD proteins in base excision repair, protein-DNA complex and mismatch repair signaling pathways. Moreover, POLD1 mutation functioned as an independent biomarker to predict the benefit of targeted treatment. Importantly, POLD1 expression was associated with immune checkpoint molecules, including CD274, CD80, CD86, CTLA4, PDCD1 and TCGIT, and facilitated an immune-excluded tumor microenvironment. Additionally, we confirmed that elevated POLD1 expression was closely correlated with the aggressive progression and poor prognosis of HCC in the real-world AHYMUN cohort.ConclusionWe identified a significant association between elevated POLD1 expression and poor patient survival and immune-excluded tumor microenvironment of HCC. Together, these findings indicate that POLD1 provides a valuable biomarker to guide the molecular diagnosis and development of novel targeted therapeutic strategies for HCC patients.

Highlights

  • Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer, with over half a million new cases diagnosed worldwide each year

  • We arranged these genes according to the number of pathways they are involved in and found that the polymerase delta (POLD) family participated in four pathways, indicating the important value of POLDs in DNA damage repair (DDR) (Figure 1A)

  • POLD1 had the highest Z-score in the heatmap compared with POLD2, POLD3 and POLD4, indicating its greater significance for HCC prognosis (Figure 1C)

Read more

Summary

Introduction

Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer, with over half a million new cases diagnosed worldwide each year. As the sixth leading cause of cancer-related mortality globally, HCC accounts for 4.7% of all cancer deaths. In 2020, over 910,000 people were diagnosed with HCC, and its incidence is continuously rising [2]. In China, the incidence of HCC is high, accounting for 55% of the total number of HCC patients worldwide. Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide, and the DNA polymerase delta (POLD) family is significantly related to cancer prognosis. This study aimed to explore the significance of the POLD family in HCC via the DNA damage repair (DDR) pathway

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call