Abstract

A class of NAD-dependent protein deacetylases, the Sirtuin (SIRT) family of proteins is involved in aging, cell survival, and neurodegeneration. Recently, SIRT proteins, including SIRT6, have been reported to be important in learning and memory. However, the role of SIRT6 in excitatory brain neurons in cognitive behaviors is not well characterized. We investigated how cognitive behaviors are affected by genetic SIRT6 depletion in excitatory neurons in the mouse forebrain. We generated a conditional knockout (cKO) mouse line by mating two transgenic lines, Floxed SIRT6 and CaMKIIa-Cre. SIRT6 was thus deleted by Cre recombinase in CaMKIIa-expressing excitatory neurons. We performed cognitive behavioral tests, focusing on learning and memory, including contextual fear conditioning and Morris-water maze. The freezing level of SIRT6 cKO before the fear conditioning was comparable to that of wild-type littermate controls, while the freezing level after the conditioning was higher in SIRT6 cKO mice. In contrast, the mice showed normal spatial learning and memory in the Morris-water maze. In addition, anxiety and locomotion were also normal in SIRT6 cKO mice. SIRT6 genetic depletion enhanced contextual fear memory without affecting spatial memory. Since a previous report showed that overexpression of SIRT6 reduced contextual fear memory, our results suggest that the expression level of SIRT6 bi-directionally regulates contextual fear memory in mice.

Highlights

  • Sirtuins (SIRTs) are a class of nicotinamide adenine dinucleotide (NAD)-dependent deacetylases that have been found to be involved in aging and cellular stress in various species [1,2,3]

  • Littermate mice with a genotype of SIRT6 fl/fl; calmodulin-dependent kinase IIa (CaMKIIa)-Cre −/− were used as WT controls (Additional file 1: Figure S1)

  • We examined contextual fear memory in SIRT6 conditional knockout (cKO) mice

Read more

Summary

Introduction

Sirtuins (SIRTs) are a class of nicotinamide adenine dinucleotide (NAD)-dependent deacetylases that have been found to be involved in aging and cellular stress in various species [1,2,3]. * Correspondence: kaang@snu.ac.kr 1Laboratory of Neurobiology, School of Biological Sciences, Seoul National University, Seoul 08826, South Korea Full list of author information is available at the end of the article To further examine the relationship between SIRT6 and learning and memory, we generated a conditional SIRT6 knockout (SIRT6 cKO) by mating Floxed SIRT6 mice with mice expressing Cre recombinase under the control of the Ca2+/calmodulin-dependent kinase IIa (CaMKIIa)

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call