Abstract

To investigate whether elevated CO2 (eCO2) changes the influence of nanoparticles (NPs) on soil microbial communities and the mechanisms, various nano-ZnO (0, 100, 300, and 500mg·kg-1) and CO2 concentrations (400 and 800µmol·mol-1) were applied to tomato plants (Solanum lycopersicum L.) in growth chambers. Plant growth, soil biochemical properties, and rhizosphere soil microbial community composition were analyzed. In 500mg·kg-1 nano-ZnO-treated soils, root Zn content was 58% higher, while total dry weight (TDW) was 39.8% lower under eCO2 than under atmospheric CO2 (aCO2). Compared with the control, the interaction of eCO2 and 300mg·kg-1 nano-ZnO decreased and increased bacterial and fungal alpha diversities, respectively, which was caused by the direct effect of nano-ZnO (r = - 1.47, p < 0.01). Specifically, the bacterial OTUs decreased from 2691 to 2494, while fungal OTUs increased from 266 to 307, when 800-300 was compared with 400-0 treatment. eCO2 enhanced the influence of nano-ZnO on bacterial community structure, while only eCO2 significantly shaped fungal composition. In detail, nano-ZnO explained 32.4% of the bacterial variations, while the interaction of CO2 and nano-ZnO explained 47.9%. Betaproteobacteria, which are involved in C, N, and S cycling, and r-strategists, such as Alpha- and Gammaproteobacteria and Bacteroidetes, significantly decreased under 300mg·kg-1 nano-ZnO, confirming reduced root secretions. In contrast, Alpha- and Gammaproteobacteria, Bacteroidetes, Chloroflexi, and Acidobacteria were enriched in 300mg·kg-1 nano-ZnO under eCO2, suggesting greater adaptation to both nano-ZnO and eCO2. Phylogenetic Investigation of Communities by Reconstruction of Unobserved States 2 (PICRUSt2) analysis demonstrated that bacterial functionality was unchanged under short-term nano-ZnO and eCO2 exposure. In conclusion, nano-ZnO significantly affected microbial diversities and the bacterial composition, and eCO2 intensified the damage of nano-ZnO, while the bacterial functionality was not changed in this study.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call