Abstract

Hepatic bile synthesis is altered during experimental gallstone formation. In response to cholesterol, there is a hydrophobic shift in hepatic bile acid synthesis and hypersecretion of phospholipids. These changes decrease the vesicular capacity for cholesterol and favor crystallization. The mechanism for these changes in hepatic bile formation is unknown. Calmodulin (CaM), a Ca2+ receptor protein involved in cellular secretion, regulates gallbladder transport and may play an important role in alterations of hepatic bile formation during cholelithiasis. We hypothesized that biliary CaM activity is altered during gallstone formation and may be associated with changes in bile acid and phospholipid synthesis. Prairie dogs were fed either control (N = 22) or 1.2% cholesterol-enriched (N = 26) diets for one to six weeks. Cholecystectomy was performed; the common bile duct was cannulated, and hourly bile samples were collected. CaM was measured in bile and gallbladder tissues by radioimmunoassay. Bile samples were analyzed for cholesterol, phospholipids, total bile acids, total protein, calcium, and individual bile acid composition. Compared to controls, gallstone animals had elevated hepatic bile levels of CaM, phospholipids, and cholesterol. Hydrophobic bile acid synthesis was also stimulated, with increased levels of taurochenodeoxycholic acid (TCDCA) and decreased taurocholic acid (TCA). Gallbladder bile demonstrated similar changes. Although gallbladder bile CaM levels were increased, tissue levels were unchanged, suggesting that increased CaM concentration is a hepatic phenomenon. Hepatic bile CaM activity correlated linearly with TCDCA concentration (r = 0.64, P < 0.004) and phospholipid hypersecretion (r = 0.53, P < 0.03). The relationship between biliary CaM and increased concentrations of TCDCA and phospholipids suggests a role for CaM in alterations of hepatocyte secretion that may promote gallstone formation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.