Abstract

Medial prefrontal cortex (mPFC) is known to be involved in relapse after cocaine withdrawal, but the underlying cellular mechanism remains largely unknown. Here, we report that after terminating repeated cocaine exposure in rats, a gradual increase in the expression of brain-derived neurotrophic factor (BDNF) in the mPFC facilitates activity-induced long-term potentiation (LTP) of excitatorysynapses on layer V pyramidal neurons. This enhanced synaptic plasticity could be attributed to BDNF-induced suppression of GABAergic inhibition in the mPFC by reducing the surface expression of GABA(A) receptors. The BDNF effect was mediated by BDNF-TrkB-phosphatase 2A signaling pathway. Downregulating TrkB expression bilaterally in the mPFC reduced the locomotor hypersensitivity to cocaine 8days after cocaine withdrawal. Thus, elevated BDNF expression after cocaine withdrawal sensitizes the excitatory synapses in the mPFC to undergo activity-induced persistent potentiation that may contribute to cue-induced drug craving and drug-seeking behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.