Abstract

AbstractScots pine (Pinus sylvestris L.) trees were grown in open top chambers for three years under ambient and elevated CO2 concentrations. The trees were aged 3 y at the beginning of the CO2 exposure, and the effects of the treatment on total stem volume, stem wood biomass, wood quality and wood anatomy were examined at the end of the exposure. The elevated CO2 treatment lead to a 49% and 38% increase in stem biomass and stem wood volume, respectively. However, no significant effects of the elevated CO2 treatment on wood density were observed, neither when green wood density was estimated from stem biomass and stem volume, nor when oven‐dry wood density was measured on small wood samples. Under elevated CO2 significantly wider growth rings were observed. The effect of elevated CO2 on growth ring width was primarily the result of an increase in earlywood width. Wood compression strength decreased under elevated CO2 conditions, which could be explained by significantly larger tracheids and the increased earlywood band, that has thinner walls and larger cavities. A significant decrease of the number of resin canals in the third growth ring was observed under the elevated treatment; this might indicate that trees produced and contained less resin, which has implications for disease and pest resistance. So, although wood volume yield in Scots pine increased significantly with elevated CO2 after three years of treatment, wood density remained unchanged, while wood strength decreased. Whilst wood volume and stem biomass production may increase in this major boreal forest tree species, wood quality and resin production might decrease under future elevated CO2 conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call