Abstract

AbstractDryland wind transport of sediment can accelerate soil erosion, degrade air quality, mobilize dunes, decrease water supply, and damage infrastructure. We measured aeolian sediment horizontal mass flux (q) at 100 cm height using passive aspirated sediment traps to better understand q variability on the Colorado Plateau. Measured q ‘hot spots’ rival the highest ever recorded including 7,460 g m−2 day−1 in an off‐highway vehicle (OHV) area, but were more commonly 50‐2,000 g m−2 day−1. Overall mean q on rangeland sites was 5.14 g m−2 day−1, considerably lower than areas with concentrated livestock use (9‐19 g m−2 day−1), OHV use (414 g m−2 day−1), and downwind of unpaved roads (13.14 g m−2 day−1), but were higher than areas with minimal soil disturbance (1.60 g m−2 day−1). Rangeland q increased with increasing annual temperature, increased winds, and decreasing precipitation. Spatial modeling suggests that ~92‐93% of regional q occurs in rangelands versus ~7‐8% along unpaved roads. Four of the five largest road q values (n=33) measured were along roads used primarily for oil or gas wells. Our findings indicate that predicted future mega‐droughts will increase q disproportionately in disturbed rangelands, and potentially further compromise air quality, hydrologic cycles, and other ecosystem services. Published 2018. This article is a U.S. Government work and is in the public domain in the USA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.