Abstract

Glioblastoma multiforme (GBM) is the most aggressive type of primary brain tumor, and the presence of glioma stem cells (GSCs) has been linked to its resistance to treatments and recurrence. Additionally, aberrant glycosylation has been implicated in the aggressiveness of cancers. However, the influence and underlying mechanism of N-glycosylation on the GSC phenotype and GBM malignancy remain elusive. Here, we performed an in-silico analysis approach on publicly available datasets to examine the function of N-glycosylation-related genes in GSCs and gliomas, accompanied by a qRT-PCR validation experiment. We found that high α-1,2-mannosidase MAN1C1 is associated with immunological functions and worse survival of glioma patients. Differential gene expression analysis and qRT-PCR validation revealed that MAN1C1 is highly expressed in GSCs. Furthermore, higher MAN1C1 expression predicts worse outcomes in glioma patients. Also, MAN1C1 expression is increased in the perinecrotic region of GBM and is associated with immunological and inflammatory functions, a hallmark of the GBM mesenchymal subtype. Further analysis confirmed that MAN1C1 expression is closely associated with infiltrating immune cells and disrupted immune response in the GBM microenvironment. These suggest that MAN1C1 is a potential biomarker for gliomas and may be important as an immunotherapeutic target for GBM.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.