Abstract

Lateral-flow immunosensing devices continue to be the most successful commercial realization of analytical microdevices. They owe their success to their simplicity, which significantly depends on the capillary-driven flow and versatile technological platform that lends itself to fast and low-cost product development. To compete with such a convenient product, microsystems can benefit from simple-to-operate fluid manipulation. We show that the capillary-driven flow in microchannels can be manipulated with electrochemically activated valves with no moving parts. These valves consist of screen-printed electrode pairs that are transversal to the flow. One of the electrodes is solvent-etched to produce a superhydrophobic surface that provides passive stopping and facilitates low-voltage (~1 V) actuation of the flow via electrowetting. The operation of such valves in the stop-go mode, with a response time between 2 and 45 sec depending on the type and concentration of salt, is demonstrated. Mechanistic investigations indicated that the response depends on at least three phenomena that contribute to electrocapillarity: the electrochemical double-layer capacitance, specific counterion adsorption, and possible electrohydrodynamic effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.