Abstract

When developing deep learning models for accurate property prediction, it is sometimes overlooked that some material physical properties are insensitive to the local atomic environment. Here, we propose the elemental convolution neural networks (ECNet) to obtain more general and global element-wise representations to accurately model material properties. It shows better prediction in properties like band gaps, refractive index, and elastic moduli of crystals. To explore its application on high-entropy alloys (HEAs), we focus on the FeNiCoCrMn/Pd systems based on the data of DFT calculation. The knowledge from less-principal element alloys can enhance performance in HEAs by transfer learning technique. Besides, the element-wise features from the parent model as universal descriptors retain good accuracy at small data limits. Using this framework, we obtain the concentration-dependent formation energy, magnetic moment and local displacement in some sub-ternary and quinary systems. The results enriched the physics of those high-entropy alloys.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.