Abstract
In the present paper, we introduce fundamental results in the KKM theory for G-convex spaces which are equivalent to the Brouwer theorem, the Sperner lemma, and the KKM theorem. Those results are all abstract versions of known corresponding ones for convex subsets of topological vector spaces. Some earlier applications of those results are indicated. Finally, we give a new proof of the Himmelberg fixed point theorem andG-convex space versions of the von Neumann type minimax theorem and the Nash equilibrium theorem as typical examples of applications of our theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Korean Journal of Computational & Applied Mathematics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.