Abstract

The paper outlines an approach to the general methodological problem of equivalence assessment which is based on the classical theory of testing statistical hypotheses. Within this frame of reference it is natural to search for decision rules satisfying the same criteria of optimality which are customarily applied in deriving solutions to one- and two-sided testing problems. For three standard situations very frequently encountered in medical applications of statistics, a concise account of such an optimal test for equivalence is presented. It is pointed out that tests based on the well-known principle of confidence interval inclusion are valid in the sense of guaranteeing the prespecified level of significance, but tend to have an unnecessarily low efficiency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.