Abstract

By solving pertinent mathematical models with numerical and computational methods, we analyze the formation of superfluid vorticity structures in a turbulent normal fluid with an inertial range exhibiting Kolmogorov scaling. We demonstrate that mutual friction forcing causes quantum vortex instabilities whose signature is spiral vortical configurations. The spirals expand until they accidentally meet metastable, intense normal fluid vorticity tubes of similar curvature and vorticity orientation that trap them by driving them towards low mutual friction sites where superfluid bundles are formed. The bundle formation sites are located within the tube cores, but, due to tube curvature and many-tube interaction effects, are displaced by variable distances from the tube centerlines as they follow the contours of the latter. We analyze possible implications of these processes in fully developed thermal superfluid turbulence dynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.