Abstract
Abstract The paper is concerned with some aspects of the theory of elementary volume from the measure-theoretical standpoint. It is shown that there exists a nontrivial solution of Cauchy's functional equation, nonmeasurable with respect to every translation invariant measure on the real line, extending the one-dimensional Lebesgue measure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.