Abstract
On the basis of Wang and Cheng (J. Math. Anal. Appl. 384 (2011) 597–606), this paper further investigates elementary renewal theorems for counting processes generated by random walks with widely orthant dependent increments. The obtained results improve the corresponding ones of the above-mentioned paper mainly in the sense of weakening the moment conditions on the positive parts of the increments. Meanwhile, a revised version of strong law of large numbers for random walks with widely orthant dependent increments is established, which improves Theorem 1.4 of Wang and Cheng (2011) by enlarging the regions of dominating coefficients. Finally, by using the above results, some precise large deviation results for a nonstandard renewal risk model are established, in which the innovations are widely orthant dependent random variables with common heavy tails, and the inter-arrival times are also widely orthant dependent.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.