Abstract

In this study, the fuel-rich combustion of methane in a two-layer porous media burner consisting of dense alumina pellets of different diameters was investigated experimentally and numerically. For a fixed inlet gas velocity of 0.15 m/s, methane-rich flames were stabilized near the interface of two layers for equivalence ratios from 1.4 to 1.6. It was found that 40% of the methane was converted to syngas at the equivalence ratio of 1.6 using a reforming efficiency based on low heating values. To further increase the hydrogen yield and make the burner more suitable for applications in fuel cells, a portion of the downstream layer was coated with 0.08 wt % Ni catalyst. The reforming efficiency of methane to hydrogen increased from 18.2% to 23.9% after the catalytic enhancement. A combined homogeneous and heterogeneous elementary reaction mechanism was developed for methane partial oxidation in the porous media burner with catalytic enhancement. A one-dimensional model was explored by coupling the combined m...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.