Abstract
In 2007, Andrews and Paule published the eleventh paper in their series on MacMahon's partition analysis, with a particular focus on broken k-diamond partitions. On the way to broken k-diamond partitions, Andrews and Paule introduced the idea of k-elongated partition diamonds. Recently, Andrews and Paule revisited the topic of k-elongated partition diamonds. Using partition analysis and the Omega operator, they proved that the generating function for the partition numbers dk(n) produced by summing the links of k-elongated plane partition diamonds of length n is given by (q2;q2)∞k(q;q)∞3k+1 for each k≥1. A significant portion of their recent paper involves proving several congruence properties satisfied by d1,d2 and d3, using modular forms as their primary proof tool. In this work, our goal is to extend some of the results proven by Andrews and Paule in their recent paper by proving infinitely many congruence properties satisfied by the functions dk for an infinite set of values of k. The proof techniques employed are all elementary, relying on generating function manipulations and classical q-series results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.