Abstract

Excellent resistance against oxide scale formation is essential for the application of newly designed alloys at high temperatures. Therefore, the detailed understanding of oxidation processes is crucial for the successful design of new materials for application. In the course of the present thesis, oxide scale formation on single-crystalline, γ′-strengthened Co- and Ni-base model alloys was investigated. Results derived by classical thermogravimetry and sequential exposure to ¹⁶/¹⁸O₂ were supplemented by various sophisticated, surface analytical techniques. The impact of the two-phase microstructure during the early stages of scale formation could be demonstrated by high-resolution transmission electron microscopy for the ternary Co-Al-W system. Kinetic processes during high-temperature oxidation of ternary model alloys were investigated depending on the W content between 800 and 900 °C. Furthermore, the role of base elements (Co or Ni) was elucidated with the help of another single-crystalline model alloy series. The development of diffusion-limiting barrier layers as well as the formation of unwanted phases could be directly correlated to the Co/Ni ratio in the alloy. Two-stage tracer exchange experiments in ¹⁶/¹⁸O₂-containing atmospheres were conducted to investigate the transport of reactants through growing oxide scales. Besides counter-current transport of cations and anions along different paths also the development of pores and microchannels was confirmed by the selected experimental approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.