Abstract

ABSTRACTWe explore elementary matrix reduction over certain rings characterized by properties related to stable range. Let R be a commutative ring. We call R locally stable if aR+bR = R⇒∃x∈R such that R∕(a+bx)R has stable range 1. We study locally stable rings and prove that every locally stable Bézout ring is an elementary divisor ring. Many known results on domains are thereby generalized.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.