Abstract

We characterize elementary equivalences and inclusions between von Neumann regular real closed rings in terms of their boolean algebras of idempotents, and prove that their theories are always decidable. We then show that, under some hypotheses, the map sending an L-structure R to the L-structure of definable functions from Rn to R preserves elementary inclusions and equivalences and gives a structure with a decidable theory whenever R is decidable. We briefly consider structures of definable functions satisfying an extra condition such as continuity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.