Abstract

* Author writes in a clear and engaging style * Contains never before published elementary proofs * Author provides new results and detailed exposition * Self-contained, and suitable for use in a classroom setting or for self-study * A highly creative contribution to the theory of modular forms and dirichlet series The main topics of the book are the critical values of Dirichlet L-functions and Hecke L-functions of an imaginary quadratic field, and various problems on elliptic modular forms. As to the values of Dirichlet L-functions, all previous papers and books reiterate a single old result with a single old method. After a review of elementary Fourier analysis, the author presents completely new results with new methods, though old results will also be proved. No advanced knowledge of number theory is required up to this point. As applications, new formulas for the second factor of the class number of a cyclotomic field will be given. The second half of the book assumes familiarity with basic knowledge of modular forms. However, all definitions and facts are clearly stated, and precise references are given. The notion of nearly holomorphic modular forms is introduced and applied to the determination of the critical values of Hecke L-functions of an imaginary quadratic field. Other notable features of the book are: (1) some new results on classical Eisenstein series; (2) the discussion of isomorphism classes of elliptic curves with complex multiplication in connection with their zeta function and periods; (3) a new class of holomorphic differential operators that send modular forms to those of a different weight. The book will be of interest to graduate students and researchers who are interested in special values of L-functions, class number formulae, arithmetic properties of modular forms (especially their values), and the arithmetic properties of Dirichlet series. It treats in detail, from an elementary viewpoint, the simplest cases of a fundamental area of ongoing research, the only prerequisite being a basic course in algebraic number theory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.