Abstract

We determine charge-transfer statistics in a quantum conductor driven by a time-dependent voltage and identify the elementary transport processes. At zero temperature unidirectional and bidirectional single-charge transfers occur. The unidirectional processes involve electrons injected from the source terminal due to excess dc bias voltage. The bidirectional processes involve electron-hole pairs created by time-dependent voltage bias. This interpretation is further supported by the charge-transfer statistics in a multiterminal beam-splitter geometry in which injected electrons and holes can be partitioned into different outgoing terminals. The probabilities of elementary processes can be probed by noise measurements: the unidirectional processes set the dc noise level, while bidirectional ones give rise to the excess noise. For ac voltage drive, the noise oscillates with increasing the driving amplitude. The decomposition of the noise into the contributions of elementary processes reveals the origin of these oscillations: the number of electron-hole pairs generated per cycle increases with increasing the amplitude. The decomposition of the noise into elementary processes is studied for different time-dependent voltages. The method we use is also suitable for systematic calculation of higher-order current correlators at finite temperature. We obtain current noise power and the third cumulant in the presence of time-dependent voltage drive. The charge-transfer statistics at finite temperature can be interpreted in terms of multiple-charge transfers with probabilities which depend on energy and temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.