Abstract
For every prime p>2 we exhibit a Cayley graph on $\mathbb{Z}_{p}^{2p+3}$ which is not a CI-graph. This proves that an elementary abelian p-group of rank greater than or equal to 2p+3 is not a CI-group. The proof is elementary and uses only multivariate polynomials and basic tools of linear algebra. Moreover, we apply our technique to give a uniform explanation for the recent works of Muzychuk and Spiga concerning the problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.