Abstract
This review aims to describe the principles underlying different types of inductively coupled plasma mass spectrometry (ICP-MS), and major technical advancements that reduce spectral interferences, as well as their suitability and wide applications in clinical laboratories. A literature survey was performed to review the technical aspects of ICP-MS, ICP-MS/MS, high-resolution ICP-MS, and their applications in disease diagnosis and monitoring. Compared to the atomic absorption spectrometry and ICP-optical emission spectrometry, ICP-MS has advantages including improved precision, sensitivity and accuracy, wide linear dynamic range, multielement measurement capability, and ability to perform isotopic analysis. Technical advancements, such as collision/reaction cells, triple quadrupole ICP-MS, and sector-field ICP-MS, have been introduced to improve resolving power and reduce interferences. Cases are discussed that highlight the clinical applications of ICP-MS including determination of toxic elements, quantification of nutritional elements, monitoring elemental deficiency in metabolic disease, and multielement analysis. This review provides insight on the strategies of elemental analysis in clinical laboratories and demonstrates current and emerging clinical applications of ICP-MS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.