Abstract

The effects of land use on the elemental stoichiometry of aquatic organisms have rarely been studied in semi-arid watersheds. In eight semi-arid sub-watersheds differing in land use, we determined which predictor variable(s) best explains the elemental variability in two basal food resources and benthic macroinvertebrates (BMI). The elemental composition of periphyton and seston was best explained by percentage of urban and agricultural areas, forested land and associated differences in SRP, DOC, and stream water N:P ratios. In contrast, consumer elemental stoichiometry was related to taxonomic identity and feeding mode. Elemental imbalances were higher for collector-gatherer than for scraper and collector-filterer. However, high spatial and temporal variability in the elemental composition of basal food resources obscured clear spatial patterns of imbalances between nutrient-poor upstream and nutrient-rich downstream sites. Results from this study suggest that land use can affect BMI due to alteration in stoichiometry of their food resources. However, taxonomy and allometry must be taken into account to better understand spatial and temporal changes in the elemental composition of BMI. Our results indicate the importance of considering multiple effects to accurately assess land use effects on producer and consumer stoichiometry, particularly the in highly variable Great Basin watersheds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call