Abstract

In flip chip technology, Al/Ni(V)/Cu under-bump metallization (UBM) is currently applicable for Pb-free solder, and Sn−Ag−Cu solder is a promising candidate to replace the conventional Sn−Pb solder. In this study, Sn-3.0Ag-(0.5 or 1.5)Cu solder bumps with Al/Ni(V)/Cu UBM after assembly and aging at 150°C were employed to investigate the elemental redistribution, and reaction mechanism between solders and UBMs. During assembly, the Cu layer in the Sn-3.0Ag-0.5Cu joint was completely dissolved into solders, while Ni(V) layer was dissolved and reacted with solders to form (Cu1−y,Niy)6Sn5 intermetallic compound (IMC). The (Cu1−y,Niy)6Sn5 IMC gradually grew with the rate constant of 4.63 × 10−8 cm/sec0.5 before 500 h aging had passed. After 500 h aging, the (Cu1−y,Niy)6Sn5 IMC dissolved with aging time. In contrast, for the Sn-3.0Ag-1.5Cu joint, only fractions of Cu layer were dissolved during assembly, and the remaining Cu layer reacted with solders to form Cu6Sn5 IMC. It was revealed that Ni in the Ni(V) layer was incorporated into the Cu6Sn5 IMC through slow solid-state diffusion, with most of the Ni(V) layer preserved. During the period of 2,000 h aging, the growth rate constant of (Cu1−y,Niy)6Sn5 IMC was down to 1.74 × 10−8 cm/sec0.5 in, the Sn-3.0Ag-1.5Cu joints. On the basis of metallurgical interaction, IMC morphology evolution, growth behavior of IMC, and Sn−Ag−Cu ternary isotherm, the interfacial reaction mechanism between Sn-3.0Ag-(0.5 or 1.5)Cu solder bump and Al/Ni(V)/Cu UBM was discussed and proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.