Abstract
Cross-polarized magic-angle-spinning NMR (CPMAS-NMR) techniques are assumed to be only semi-quantitative in the assessment of carbon distribution in humic substances or natural organic matter, due to a number of interferences such as spinning side bands (SSB) in spectra, paramagnetic species in samples, and low or remote protonation of aromatic carbons. Fast rotor spin rates or direct polarization NMR techniques are normally applied to improve quantitative signal detectability. Variable contact time pulse sequences were used here to obtain CPMAS-NMR spectra of organic compounds of known structure and different humic substances. Integration of spectral areas, previously subtracted of SSB, and relative stoichiometric factors were used for mathematical elaboration to calculate the elemental content in samples. These values did not significantly differ from those obtained by direct determination of elemental content with quantitative elemental analysis. Our results showed that the carbon observed CPMAS-NMR provides a quantitative representation of the whole carbon content in humic substances.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.