Abstract
Over the past few decades, energy and environmental crises have worsened due to the excessive consumption of fossil fuels. Hydrothermal liquefaction (HTL) is a promising technology for sustainable biocrude production from biomass. However, elemental migration and transformation during HTL of biomass have only received scant attention to date. Understanding the transformation mechanism is beneficial for downstream biocrude upgrading and by-products utilization for the future industrialization of HTL. In this paper, biomass is grouped into six categories: microalgae, macroalgae, lignocellulose, food waste, manure, and sludge. The biochemical composition and HTL product distribution of six kinds of biomass are compared. The conversion process of the biomacromolecules (including lipids, proteins, cellulose, hemicellulose, and lignin) and the interactions between them are also reported. Furthermore, the distribution of carbon, nitrogen, sulfur, and inorganic elements (Na, K, Ca, Mg, Al, Fe, Zn, Cu, Pb, Cd, etc.) in the HTL products is summarized, and the transformation of the organic and inorganic elements during HTL of biomass is explored. Finally, outlooks for the HTL of biomass are proposed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.